
J Glob Optim (2009) 43:445–458
DOI 10.1007/s10898-007-9195-4

Fast construction of constant bound functions for sparse
polynomials

Andrew Paul Smith

Received: 18 May 2007 / Accepted: 9 June 2007 / Published online: 31 July 2007
© Springer Science+Business Media, LLC 2007

Abstract A new method for the representation and computation of Bernstein coefficients
of multivariate polynomials is presented. It is known that the coefficients of the Bernstein
expansion of a given polynomial over a specified box of interest tightly bound the range of
the polynomial over the box. The traditional approach requires that all Bernstein coefficients
are computed, and their number is often very large for polynomials with moderately-many
variables. The new technique detailed represents the coefficients implicitly and uses lazy
evaluation so as to render the approach practical for many types of non-trivial sparse polyno-
mials typically encountered in global optimization problems; the computational complexity
becomes nearly linear with respect to the number of terms in the polynomial, instead of
exponential with respect to the number of variables. These range-enclosing coefficients can
be employed in a branch-and-bound framework for solving constrained global optimization
problems involving polynomial functions, either as constant bounds used for box selection,
or to construct affine underestimating bound functions. If such functions are used to construct
relaxations for a global optimization problem, then sub-problems over boxes can be reduced
to linear programming problems, which are easier to solve. Some numerical examples are
presented and the software used is briefly introduced.

Keywords Constrained global optimization · Bernstein polynomials · Multivariate
polynomials · Lazy evaluation · Interval arithmetic · Relaxation · Bound functions

1 Introduction

Whenever a branch-and-bound approach is used to solve a constrained global optimiza-
tion problem, it is crucial to be able to compute tight bounds for the ranges of the objec-
tive and constraint functions over subboxes, in order to efficiently resolve the associated

A. P. Smith (B)
Institute of Applied Research, University of Applied Sciences (HTWG) Konstanz,
Postfach 100543, 78405 Konstanz, Germany
e-mail: smith@htwg-konstanz.de

123

446 J Glob Optim (2009) 43:445–458

subproblems. Often, relaxations are generated by replacing the objective and constraint func-
tions by corresponding lower bound functions. The relaxed subproblem with its set of feasible
solutions constitutes a simpler type of problem (for example, a linear programming problem)
whose solution provides a lower bound for the solution of the subproblem. In all cases, the
computation of a good-quality convex lower bound function is important. The uniformly best
underestimating convex functions are convex envelopes, cf. [1,5,22]. Affine lower bound
functions are simpler to compute and work with, preserving basic shape information and
yielding linear programming problems. A sequence of diverse methods for computing such
affine bound functions for polynomials based upon Bernstein expansion has been proposed,
cf. [7–10] . Constant bound functions, the simplest of the three types, are used frequently
when interval computation techniques are applied to global optimization, cf. [12,14,18].

At a typical point during the execution of a branch-and-bound method to solve a global
optimization problem involving polynomial functions, we have a polynomial

p(x) =
l∑

i=0

ai xi , x = (x1, . . . , xn), (1)

in n variables, x1, . . . , xn , of degree l = (l1, . . . , ln), and a box

X := [x1, x1] × · · · × [xn, xn]. (2)

This paper addresses the question of how to determine a tight outer approximation for p(X),
the range of p over X , in a timely fashion. Such bounds can be determined by utilising the
coefficients of the expansion of the given polynomial into Bernstein polynomials.

The organisation of the paper is as follows: properties of Bernstein polynomials are intro-
duced in Sect. 2, with a brief discussion of complexity, which motivates this work. Section 3
establishes some important results concerning the Bernstein coefficients of monomials. The
implicit Bernstein form is introduced in Sect. 4, together with an efficient range computa-
tion algorithm. A brief discussion of the software and some numerical results are in Sect. 5.
Directions for future work conclude the paper.

1.1 Notation

A shorthand notation for multiindices is used: a vector (i1, . . . , in)T , where the n compo-
nents are non-negative integers, is abbreviated to i . The vector 0 denotes the multiindex with
all components equal to 0. Comparisons are used entrywise. The arithmetic operators on
multiindices are also defined componentwise such that i � l := (i1 � l1, . . . , in � ln)T , for
� = +,−,×, and / (with l > 0). Likewise, the minimum or maximum of two multiindices
is formed componentwise. For x ∈ Rn its multipowers are

xi :=
n∏

µ=1

x
iµ
µ . (3)

For the sum we use the notation

l∑

i=0

:=
l1∑

i1=0

· · ·
ln∑

in=0

. (4)

123

J Glob Optim (2009) 43:445–458 447

The generalised binomial coefficient is defined by

(
l

i

)
:=

n∏

µ=1

(
lµ
iµ

)
. (5)

2 Bernstein expansion

An n-variate polynomial p (1) can be represented over I = [0, 1]n as

p(x) =
l∑

i=0

bi Bi (x), (6)

where

Bi (x) =
(

l

i

)
xi (1 − x)l−i (7)

and the so-called Bernstein coefficients bi (of degree l) are given by

bi =
i∑

j=0

(i
j

)

(l
j

)a j , 0 ≤ i ≤ l. (8)

In Sect. 3 we will allow that the degree of p is given by some r , where r < l. In this case,
formulae (6)–(8) remain in force with the convention that a j = 0 if j �≤ r .

2.1 Generalised Bernstein coefficients

Although the case of the unit box I may be considered without loss of generality, since any
non-empty box in Rn can be mapped affinely thereupon, we consider here the general case.
The Bernstein coefficients bi of degree l = (l1, . . . , ln) over a box X (2) are given by

bi =
i∑

j=0

(i
j

)

(l
j

) (x − x) j
l∑

k= j

(
k

j

)
xk− j ak, 0 ≤ i ≤ l. (9)

2.2 Properties

The essential property of the Bernstein expansion is the range enclosing property, namely
that the range of p over X is contained within the interval spanned by the minimum and
maximum Bernstein coefficients:

min
i

{bi } ≤ p(x) ≤ max
i

{bi }, x ∈ X. (10)

This property is in fact merely a corollary of the convex hull property
{(

x

p(x)

)
: x ∈ I

}
⊆ conv

{(
i/ l

bi

)
: 0 ≤ i ≤ l

}
, (11)

where the convex hull is denoted by conv.
Figure 1 illustrates the convex hull property for a univariate polynomial of degree 5 over

the unit interval.

123

448 J Glob Optim (2009) 43:445–458

Fig. 1 The curve of a
polynomial of fifth degree (bold)
and the convex hull (shaded) of
its control points (marked by
squares)

bI

b2

b5

b1

b0 b4

b3

 0. 4 0.6 0.8 0. 2 0 1
5

i

It is also worth noting that the values attained by the polynomial at the vertices of X are
identical to the corresponding vertex Bernstein coefficients. For example b0 = p(x) and
bl = p(x). The sharpness property states that the lower (resp. upper) bound provided by the
minimum (resp. maximum) Bernstein coefficient is sharp, i.e., there is no underestimation
(resp. overestimation), if and only if this coefficient occurs at a vertex of X .

For a further introduction to the subject of Bernstein expansion, the reader is also referred
to [3,6,17,24]. It is known [21] that the bounds provided by the Bernstein expansion are in
general tighter than those given by interval arithmetic and many centered forms.

2.3 Complexity

The traditional approach (see, for example, [6,7,24]) assumes that all of the Bernstein coeffi-
cients are computed, and their minimum and maximum is determined. By use of an algorithm
(cf. [6,24]) which is similar to de Casteljau’s algorithm (see, for example, [17]), this com-
putation can be made efficient, with time complexity O(nl̂n+1) and space complexity (equal
to the number of Bernstein coefficients) O((l̂ + 1)n), where l̂ = maxn

i=1 li . This exponen-
tial complexity is a drawback of the method, rendering it infeasible for polynomials with
moderately many (typically, 10 or more) variables.

The main motivation of this work is therefore to exploit the range enclosing property of
the Bernstein expansion without recourse to the exhaustive computation of all the Bernstein
coefficients.

3 Bernstein coefficients of monomials

We begin by deriving some fundamental properties of the Bernstein coefficients of multivar-
iate monomials. Let us consider the case of a polynomial comprising a single term

q(x) = ak xk, x = (x1, . . . , xn), for some 0 ≤ k ≤ l. (12)

123

J Glob Optim (2009) 43:445–458 449

Without loss of generality, we can take ak = 1, since the Bernstein form is linear, i.e.,
the Bernstein coefficients for general ak may be obtained by multiplying these Bernstein
coefficients by ak :

bi =
min{i,k}∑

j=0

(i
j

)

(l
j

) (x − x) j
(

k

j

)
xk− j ak

= ak

min{i,k}∑

j=0

(i
j

)

(l
j

) (x − x) j
(

k

j

)
xk− j

Theorem 1 Let

q(x) = xk, x = (x1, . . . , xn), for some 0 ≤ k ≤ l, (13)

where l = (l1, . . . , ln). The Bernstein coefficients of q (of degree l) over X (2) are given by

bi =
n∏

m=1

b(m)
im

, (14)

where b(m)
im

is the imth Bernstein coefficient (of degree lm) of the (univariate) monomial xkm

over the interval [xm, xm].
Proof The Bernstein coefficients of q (of degree l) over X are given by

bi =
min{i,k}∑

j=0

(i
j

)

(l
j

) (x − x) j
(

k

j

)
xk− j

=
min{i1,k1}∑

j1=0

· · ·
min{in ,kn}∑

jn=0

(i1
j1

)
. . .

(in
jn

)

(l1
j1

)
. . .

(ln
jn

) (x1 − x1)
j1 . . . (xn − xn) jn

(
k1

j1

)
. . .

(
kn

jn

)
xk1− j1

1

. . . xkn− jn
n

=
min{i1,k1}∑

j1=0

(i1
j1

)

(l1
j1

) (x1 − x1)
j1

(
k1

j1

)
xk1− j1

1 · · ·
min{in ,kn}∑

jn=0

(i
j

)

(l
j

) (x − x) j
(

k

j

)
xk− j

=
n∏

m=1

min{im ,km }∑

jm=0

(im
jm

)

(lm
jm

) (xm − xm) jm

(
km

jm

)
xkm− jm

m

=
n∏

m=1

b(m)
im

.

�

Example Let n := 2, q(x) := x3
1 x2

2 , l := (3, 2), and the box X := [1, 2] × [2, 4]. The
Bernstein coefficients are

{bi } =

⎛

⎜⎜⎝

4 8 16
8 16 32

16 32 64
32 64 128

⎞

⎟⎟⎠ . (15)

123

450 J Glob Optim (2009) 43:445–458

Instead of calculating and storing all 12 Bernstein coefficients, we might instead represent
them by

1
(

4 8 16
)

⎛

⎜⎜⎝

1
2
4
8

⎞

⎟⎟⎠

⎛

⎜⎜⎝

. . .

. . .

. . .

. . .

⎞

⎟⎟⎠ ,
(16)

i.e., the coefficient ak , plus the Bernstein coefficients of x3 over [1, 2], plus the Bernstein
coefficients of x2 over [2, 4]. Any Bernstein coefficient of q over X can be computed as
required as a simple product.

3.1 Bernstein coefficients of univariate monomials

In this section we consider the Bernstein coefficients b(m)
i , 0 ≤ i ≤ lm , of degree lm , of the

univariate monomial xkm over the interval [xm, xm], for some 1 ≤ m ≤ n. For the remainder
of the section, we omit the subscript m and the superscript (m), for simplicity.

The Bernstein coefficients are given by

bi =
min{i,k}∑

j=0

(i
j

)

(l
j

) (x − x) j
(

k

j

)
xk− j (17)

We wish to simplify this computation as much as possible.

Case k = l

In this case, the formula can be simplified as follows:

bi =
min{i,k}∑

j=0

(i
j

)

(l
j

) (x − x) j
(

k

j

)
xk− j

=
i∑

j=0

(
i

j

)
(x − x) j xk− j

= xk−i
i∑

j=0

(
i

j

)
(x − x) j x i− j

= xk−i (x − x + x)i

= xk−i x i

Case k < l

In this case, we can start with the Bernstein coefficients of degree k, and use degree eleva-
tion. It is known, e.g. [4], that the coefficients of higher degree can be expressed as a simple
weighted sum of lower degree coefficients, as follows:

b[k+1]
i = ib[k]

i−1 + (k + 1 − i)b[k]
i

k + 1
, with b[k]

−1 = b[k]
k+1 = 0, i = 0, . . . , k + 1, (18)

where the superscript in square brackets denotes the degree of the coefficient.

123

J Glob Optim (2009) 43:445–458 451

Repeated degree elevation yields the following expression (cf. [4]) for the coefficients of
degree l:

b[l]
i =

min(k,i)∑

j=max(0,i−m)

(m
i− j

)(k
j

)

(k+m
i

) b[k]
j ,

=
min(k,i)∑

j=max(0,i−m)

(m
i− j

)(k
j

)

(k+m
i

) xk− j x j ,

where m = l − k. This computation can be simplified (cf. [23]) by observing that the part
of the formula consisting of the two binomial coefficients where m appears can always be
expressed as a product of k factors.

3.2 Monotonicity of the Bernstein coefficients of monomials

Theorem 2 Let q(x) = ak xk , x = (x1, . . . , xn), for some 0 ≤ k ≤ l and let X = [x1, x1]×
· · · × [xn, xn] be a box which is restricted to a single orthant of Rn. Then the Bernstein
coefficients bi of q (of degree l) over X are monotone with respect to each variable x j ,
j = 1, . . . , n.

Proof Given that the Bernstein coefficients of q over X can be expressed as a simple prod-
uct of Bernstein coefficients of univariate monomials (cf. Theorem 1), it suffices to show
monotonicity in the univariate case. �

Lemma 3 Let q(x) = xk , for some 0 ≤ k ≤ l, be a univariate monomial and let X = [x, x]
be an interval where x and x have the same sign or vanish. Then the Bernstein coefficients
bi of q (of degree l) over X are monotone with respect to i .

Proof We will assume that 0 ≤ x < x ; the negative case is entirely analogous. The result
follows by induction on the degree of the Bernstein coefficients.

Case l = k: From the case k = l above we have

b[k]
i = xk−i x i , (19)

from which it is clear that b[k]
i ≤ b[k]

i+1, i = 0, . . . , k − 1.

Case l = k + m, m ≥ 1: Assume that the Bernstein coefficients of degree k + j , b[k+ j]
i ,

i = 0, . . . , k + j , 0 ≤ j < m, are increasing. The coefficients of degree k + j + 1, from
Sect. 3.1, may be expressed as

b[k+ j+1]
i = ib[k+ j]

i−1 + (k + j + 1 − i)b[k+ j]
i

k + j + 1
, i = 0, . . . , k + j + 1, (20)

with b[k+ j]
−1 = b[k+ j]

k+ j+1 = 0. We observe that each b[k+ j+1]
i is an affine combination of b[k+ j]

i−1

and b[k+ j]
i , from which

b[k+ j]
i−1 ≤ b[k+ j+1]

i ≤ b[k+ j]
i , i = 0, . . . , k + j + 1. (21)

123

452 J Glob Optim (2009) 43:445–458

Therefore we have

b[k+ j+1]
i ≤ b[k+ j+1]

i+1 , i = 0, . . . , k + j, (22)

�

and the result follows by induction.
With this property, for a single-orthant box, the minimum and maximum Bernstein coef-

ficients must occur at a vertex of the array of Bernstein coefficients. This also implies that
the bounds provided by these coefficients are sharp; see the sharpness property (Sect. 2.2).
Finding the minimum and maximum Bernstein coefficients is therefore straightforward; it
is not necessary to explicitly compute the whole set of Bernstein coefficients. Computing
the component univariate Bernstein coefficients for a multivariate monomial has time com-
plexity O(n(l̂ + 1)2). Of course, one can readily calculate the exact range of a multivariate
monomial over a single-orthant box without recourse to any Bernstein coefficients: Given
the exponent k and the orthant in question, one can determine whether the monomial (and its
Bernstein coefficients) is increasing or decreasing with respect to each coordinate direction.
This allows one to determine in advance at which vertex of the box the minimum or maximum
is attained; one then merely needs to evaluate the monomial at these two vertices.

Without the single orthant assumption, monotonicity does not necessarily hold, and the
problem of determining the minimum and maximum Bernstein coefficients is more compli-
cated. For boxes which intersect two or more orthants of Rn , the box can be bisected, and
the Bernstein coefficients of each single-orthant sub-box can be computed separately. The
complexity of computing the minimum or maximum Bernstein coefficient will often still be
much less than O((l̂ + 1)n). It is already known [21] that a bisection performed around zero
will yield an improvement of the bounds, unless they are already sharp.

4 The implicit Bernstein form

In this section, a new method of storing and representing the Bernstein coefficients of multi-
variate polynomials is proposed, which is referred to here as the “implicit Bernstein form”.

First we can observe that since the Bernstein form is linear, if a polynomial p consists of
t terms, as follows

p(x) =
t∑

j=1

ai j xi j , 0 ≤ i j ≤ l, x = (x1, . . . , xn), (23)

then each Bernstein coefficient is equal to the sum of the corresponding Bernstein coefficients
of each term, as follows:

bi =
t∑

j=1

b(j)
i , 0 ≤ i ≤ l, (24)

where b(j)
i are the Bernstein coefficients of the j th term of p. (Hereafter, a superscript in

brackets specifies a particular term of the polynomial. The use of this notation to indicate a
particular coordinate direction, as in the previous section, is no longer required.)

Therefore one may implicitly store the Bernstein coefficients of each term, as in Sect. 3.1,
and compute the Bernstein coefficients as a sum of t products, only as needed. Computing
and storing the whole set of Bernstein coefficients, should, in general, not be required.

123

J Glob Optim (2009) 43:445–458 453

The implicit Bernstein form thus consists of computing and storing the n sets of univariate
Bernstein coefficients (one set for each component univariate monomial) for each of t terms.
Computing this form has time complexity O(nt (l̂ +1)2) and space complexity O(nt (l̂ +1)),
as opposed to O((l̂ + 1)n) for the explicit form. Computing a single Bernstein coefficient
from the implicit form requires (n + 1)t − 1 arithmetic operations.

Example We extend the example presented in Sect. 3. Let n := 2, p(x) := x3
1 x2

2 − 30x1x2,
l := (3, 2), and the box X := [1, 2] × [2, 4]. The sum of the corresponding Bernstein
coefficients of each term gives the Bernstein coefficients of p:

{bi } =

⎛

⎜⎜⎝

4 8 16
8 16 32

16 32 64
32 64 128

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

−60 −90 −120
−80 −120 −160
−100 −150 −200
−120 −180 −240

⎞

⎟⎟⎠

=

⎛

⎜⎜⎝

−56 −82 −104
−72 −104 −128
−84 −118 −136
−88 −116 −112

⎞

⎟⎟⎠ . (25)

The implicit form of these coefficients can be represented as

1
(

4 8 16
)

⎛

⎜⎜⎝

1
2
4
8

⎞

⎟⎟⎠

⎛

⎜⎜⎝

. . .

. . .

. . .

. . .

⎞

⎟⎟⎠
+

−30
(

2 3 4
)

⎛

⎜⎜⎝

1
4
3
5
3
2

⎞

⎟⎟⎠

⎛

⎜⎜⎝

. . .

. . .

. . .

. . .

⎞

⎟⎟⎠ .
(26)

4.1 Determination of the Bernstein enclosure for polynomials

This section considers the determination of the minimum Bernstein coefficient; the determi-
nation of the maximum Bernstein coefficient is analogous. The Bernstein enclosure is given
as the interval spanned by the minimum and maximum Bernstein coefficients.

If the box X (2) spans multiple orthants of Rn , then it should be subdivided around zero
into two or more subboxes, and the Bernstein enclosure for each subbox computed sepa-
rately. The remainder of this section thus assumes that X is restricted to a single orthant. It
should be noted that, for branch-and-bound methods for constrained global optimization, the
vast majority of the computational effort is typically occupied with small subboxes which lie
within a single orthant.

Clearly, the determination of the minimum Berstein coefficient is not so simple as for a
polynomial comprising a single term; the minimum is not guaranteed to occur at a vertex of
the array, although that may often be the case. For polynomials in general, it is doubtful that
a universal method more efficient than simply computing all of the Bernstein coefficients
exists. However, when the number of terms of the polynomial is much less than the number
of Bernstein coefficients (which is typically the case for many real-world problems), it is
often possible in practice to dramatically reduce the number of coefficients which have to be
computed, by reducing the number of Bernstein coefficients which have to be searched.

The minimum Bernstein coefficient is referenced by a multiindex, which we label imin,
0 ≤ imin ≤ l. We wish to determine the value of the multiindex of the minimum Bernstein
coefficient in each direction. In order to reduce the search space (among the (l̂+1)n Bernstein
coefficients) we can exploit Theorem 2 and employ the following tests:

123

454 J Glob Optim (2009) 43:445–458

• Uniqueness: If a variable x j appears in only one term of the polynomial, then the Bernstein
coefficients of the term in which it appears determines imin j , which is thus either 0 or l j .

• Monotonicity: If the Bernstein coefficients of all terms containing x j are likewise mono-
tone with respect to x j , then imin j = 0 (if all are increasing) or l j (if decreasing).

• Dominance: Otherwise, all the terms containing x j can be split into two sets, depend-
ing on whether they are increasing or decreasing with respect to x j . If the width of the
Bernstein enclosure of one set is less than the minimum difference between Bernstein
coefficients among the terms of the other set, then the first set can make no contribution
to the determination of imin j , and the monotonicity clause applies.

Theorem 4 (Location of minimum Bernstein coefficient under uniqueness/monotonicity)
For a polynomial p given as per (23), the multiindex of the minimum Bernstein coefficient of
p over a single-orthant box X, imin, must satisfy

t
min
j=1

{i (j)
min} ≤ imin ≤ t

max
j=1

{i (j)
min}. (27)

Proof Suppose there is some k, k ∈ {1, . . . , n}, for which

t
min
j=1

{imin
(j)
k } > imink . (28)

The case of imink exceeding the maximum of the imin
(j)
k is entirely analogous. Assume

0 ≤ xk < xk ; the negative case is analogous. Then there is no m, m ∈ {1, . . . , t}, for which

imin
(m)
k = 0 and therefore the b(m)

i are decreasing with respect to ik for all m ∈ {1, . . . , t}.
Therefore the bi = ∑t

j=1 b(j)
i are decreasing with respect to ik and so imink = lk , which is

a contradiction of the initial supposition, and so the result follows. �

Theorem 5 (Location of minimum Bernstein coefficient under dominance) Given a poly-
nomial p as per (23) and a single-orthant box X, for some j ∈ {1, . . . , n}, let pinc be the
polynomial comprising the sum of the terms of p which are increasing with respect to x j ,
and let pdec be the polynomial comprising the sum of the terms of p which are decreasing
with respect to x j , with Bernstein coefficients binc

i and bdec
i , respectively, 0 ≤ i ≤ l. If

∀i = 0, . . . , l, i j �= l j : binc
i1,...,i j +1,...,il − binc

i1,...,i j ,...,il > bdec
i1,...,0,...,il − bdec

i1,...,l j ,...,il (29)

then imin j = 0. If

∀i = 0, . . . , l, i j �= l j : bdec
i1,...,i j ,...,il − bdec

i1,...,i j +1,...,il > binc
i1,...,l j ,...,il − binc

i1,...,0,...,il (30)

then imin j = l j .

Proof The proof is presented for the first result (29); the proof of the second (30) is entirely
analogous. For all i = 0, . . . , l, i j �= l j we have

bi1,...,i j +1,...,il = binc
i1,...,i j +1,...,il + bdec

i1,...,i j +1,...,il

≥ binc
i1,...,i j +1,...,il + bdec

i1,...,l j ,...,il

> binc
i1,...,i j ,...,il + bdec

i1,...,0,...,il

≥ binc
i1,...,i j ,...,il + bdec

i1,...,i j ,...,il

= bi1,...,i j ,...,il ,

i.e., that the bi are increasing with respect to x j , and the result follows. �

123

J Glob Optim (2009) 43:445–458 455

4.2 Example

Consider the polynomial

p(x) = 3x1x5
2 + 2x4

1 x2 − 8x2
1 x6

3 x2
4 − x1x8

4 + 3x3
2 x5 − 10x5

4 x5
5 x5

6 + 0.01x2
5 x2

6 + 4x3
5 x4

7

(31)

over the box

X = [1, 2]7. (32)

The degree, l, is (4, 5, 6, 8, 5, 5, 4) and the number of Bernstein coefficients is thus 3, 40, 200
(5 × 6 × 7 × 9 × 6 × 6 × 5). We can make the following observations:

• Uniqueness: x3 appears only in term 3, which is decreasing wrt it. Therefore imin3 = 6.
• Uniqueness: x7 appears only in term 8, which is increasing wrt it. Therefore imin7 = 0.
• Monotonicity: x2 appears in terms 1 and 2, both of which are increasing wrt it. Therefore

imin2 = 0.
• Monotonicity: x4 appears in terms 3, 4, and 6, all of which are decreasing wrt it. Therefore

imin4 = 8.
• Dominance: x6 appears in terms 6 and 7, one of which is decreasing and one of which is

increasing wrt it. However, term 6 dominates term 7 to such an extent that term 7 plays
no role in determining imin6. Therefore imin6 = 5, since term 6 is decreasing wrt x6.

Variable x1 appears in terms 1, 2, 3, and 4, and x5 appears in terms 6, 7, and 8. A determination
of imin1 and imin5 thus seems to be non-trivial.

So far, we have determined that imin = (?, 0, 6, 8, ?, 5, 0). The dimensionality of the
search space has thus been reduced from 7 to 2. The number of Bernstein coefficients to
compute is consequently reduced from 3, 40, 200 to 30 (5 × 6), plus those needed for the
implicit Bernstein form, 78 (8 + 7 + 13 + 11 + 6 + 18 + 6 + 9), 108 total.

4.3 Algorithm for the efficient calculation of the Bernstein enclosure of polynomials

An algorithm for the determination of the minimum Bernstein coefficient is given here; the
procedure for the determination of the maximum Bernstein coefficient is analogous.

We are given a polynomial p consisting of t terms, whose degree is l = (l1, . . . , ln), and a
box X , as before. We seek to find a multiindex imin which references the minimum Bernstein
coefficient bimin .

1. If X is not restricted to a single orthant of Rn , i.e., there is one or more component inter-
vals of X , [xm, xm], 1 ≤ m ≤ n, which contain both positive and negative numbers, then
subdivide X around 0, perform steps 2–5 below for each subbox, and take the minimum
of the minimum Bernstein coefficients for each subbox.

2. Compute the implicit Bernstein form of p over X , consisting of the Bernstein coefficients
of the component univariate monomials of each term.

3. Initialise the search space for imin, S, as the set of all possible multiindices
{(0, . . . , 0), . . . , (l1, . . . , ln)}.

4. For each variable x j , j = 1, . . . , n:

(a) Uniqueness test: Count the number of terms for which the Bernstein coefficients
are non-constant with respect to x j . If the number is one, then restrict S so that the
j th index corresponds to the minimum Bernstein coefficient of the non-constant
term; it is either 0 or l j .

123

456 J Glob Optim (2009) 43:445–458

(b) If the uniqueness test fails, then proceed with the monotonicity test: sort the terms
into those which are increasing, decreasing, and constant with respect to x j . If the
set of increasing terms is empty, then restrict S so that the j th index is l j . If the set
of decreasing terms is empty, then restrict S so that the j th index is 0.

(c) If the uniqueness and monotonicity tests fail, then proceed with the dominance
test: using the two non-empty sets of increasing and decreasing terms from the
monotonicity test, compute the width of the Bernstein enclosures of each set, and
the minimum absolute difference between Bernstein coefficients of each set. If the
minimum absolute difference of the decreasing terms is greater than the width of
the increasing terms, then restrict S so that the j th index is l j . If the minimum abso-
lute difference of the increasing terms is greater than the width of the decreasing
terms, then restrict S so that the j th index is 0.

5. Explicitly compute the Bernstein coefficients corresponding to the remaining multiin-
dices in S, from the implicit form, and determine their minimum.

5 Numerical results

The implicit Bernstein form and the algorithm presented in the previous section is tested here,
and compared to the usual Bernstein form. For each test problem, consisting of a polynomial
and a starting box, the Bernstein enclosure is computed, using each method. The box is then
bisected in each variable direction in turn, providing a crude simulation of a branch-and-
bound environment. One of the two resulting subboxes (chosen randomly) is retained and
the other is discarded, although in practice, various criteria may be used for subbox selection.
After each bisection, the Bernstein enclosure is recomputed over the new box. This process
is iterated 100 times, so that the final subbox is very small.

With normal floating-point arithmetic, inaccuracies may be introduced into the calcula-
tion of the Bernstein coefficients and the corresponding bounds, due to rounding errors. As
a result, the bounds may not be guaranteed to enclose the range of the polynomial over the
box. Therefore interval arithmetic has been used; all Bernstein coefficients are computed and
stored as intervals. The bounds provided are thus guaranteed; see also [2,13,16].

The first test problem consists of the polynomial

p(x) = 3x2
1 x3

2 x4
3 + 1x3

1 x2x4
3 − 5x1x2x5

4 + 1x3x4x3
5 (33)

over the box

X = [1, 2] × [2, 3] × [4, 6] × [−5,−2] × [2, 10]. (34)

The second test problem is the example given in Sect. 4.2. The remaining test problems are
polynomial objective functions drawn from GLOBALLib [11]. Where unspecified, a suitable
single-orthant starting box of unit width was chosen.

The results are given in Table 1; n is the number of variables, t the number of terms,
and l the degree, in each case. The number of Bernstein coefficients refers to the number
that have to be computed explicitly; for test2, for example (the polynomial and box given
in Sect. 4.2), 30 Bernstein coefficients are required to determine the minimum, and 30 to
determine the maximum. The timings in the table are the mean computation times for a single
iteration. These numbers should be multiplied by 100 to get the computation times for all
iterations. The results were produced with C++ on a 2.4 GHz PC running Linux; the BeBP
software package [20] and the interval library filib++ [15] were employed. The algorithm
may be executed with floating-point arithmetic in place of interval arithmetic; this speeds

123

J Glob Optim (2009) 43:445–458 457

Table 1 Number of Bernstein coefficients calculated and computation time for some example polynomials

Name n t l Bernstein form Implicit Bernstein form

Iterations No. of BCs Time (s) Iterations No. of BCs Time (s)

test1 5 4 (3, 3, 4, 5, 3) 1–100 1,920 0.01 1–3 60

4–5 12 0.0001

6–100 2

test2 7 8 (4, 5, 6, 8, 5, 5, 4) 1–100 3,40,200 6.05 1–9 60

10–100 12 0.0004

mhw4d 5 17 (2, 3, 4, 4, 4) 1–100 1,500 0.04 1–3 1,000

4–100 200 0.0068

meanvar 7 49 (2, 2, 2, 2, 2, 2, 2) 1–100 2,187 0.24 1–100 2 0.0008

ex2-1-5 10 16 (2, 2, 2, 2, 2, 1–100 17,496 0.83 1–100 2 0.0003

2, 2, 1, 1, 1)

harker 20 40 (3, 3, 3, 3, 3, 3, 3, 1–100 1.96×1011 > 105 1–100 2 0.0019

3, 3, 3, 3, 3, 3, 3,

2, 2, 2, 2, 2, 2)

up the process (by approximately one order of magnitude), but the resultant bounds are no
longer guaranteed.

It is clear that the use of the implicit Bernstein form can dramatically reduce the num-
ber of Bernstein coefficients that need to be computed explicitly, thereby speeding up the
computation of the Bernstein enclosure by up to several orders of magnitude.

It should be noted that almost all of the polynomials in [11] are sparse and of low degree,
with few or no terms involving more than a single variable. This seems to be typical of
the types of polynomials encountered in global optimization problems. In such cases, the
uniqueness, monotonicity, and dominance tests are much more likely to succeed, compared
to a polynomial where each variable appears in many terms.

6 Future work

A follow-up paper will report on algorithms for the construction of affine bound functions for
polynomials, cf. [9,10], based upon the implicit Bernstein form presented here. These bound
functions, and the constant bound functions here, will be tested as a black-box component
of the COCONUT software environment [19], a general-purpose package for the solution of
global optimization and continuous constraint satisfaction problems.

In principle, this approach may be extended to the construction of tight constant bound
functions for arbitrary sufficiently differentiable functions, by using Taylor expansion. A
high-degree Taylor polynomial can be calculated, for which the implicit Bernstein form and
the resulting bounds can be computed, as before. The remainder of the Taylor expansion can
be enclosed in an interval, by using established methods from interval analysis. Subtracting
this interval from the lower bound of the Taylor polynomial provides the lower bound for
the given function. However, such Taylor polynomials are in general dense, for which the
computational advantage of the implicit Berstein form is negated.

123

458 J Glob Optim (2009) 43:445–458

Acknowledgements The author would like to thank Jürgen Garloff for his careful reading of the manuscript
and his constructive comments. Support from the German Research Council (DFG) is gratefully acknowledged.

References

1. Adjiman, C.S., Floudas, C.A.: Rigorous convex underestimators for general twice-differentiable prob-
lems. J. Glob. Optim. 9(1), 23–40 (1996)

2. Borradaile, G., Van Hentenryck, P.: Safe and tight linear estimators for global optimization. Math.
Program. 102(3), 495–518 (2005)

3. Cargo, G.T., Shisha, O.: The Bernstein form of a polynomial. J. Res. Nat. Bur. Stand. 70B, 79–81 (1966)
4. Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form. Comput. Aided Geom.

Design 5, 1–26 (1988)
5. Floudas, C.A.: Deterministic Global Optimization: Theory, Methods, and Applications. Series Non-

convex Optimization and its Applications. Vol. 37. Kluwer Acad. Publ., Dordrecht (2000)
6. Garloff, J.: Convergent bounds for the range of multivariate polynomials. In: Nickel K. (eds.) Interval

Mathematics 1985. Lecture Notes in Computer Science, vol. 212, pp. 37–56, Springer, Berlin (1986)
7. Garloff, J., Smith, A.P. : An improved method for the computation of affine lower bound functions for

polynomials. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization Series Noncon-
vex Optimization with its Applications, pp. 135–144. Kluwer Acad. Publ., Dordrecht (2004)

8. Garloff, J., Smith, A.P.: A comparison of methods for the computation of affine lower bound functions
for polynomials. In: Jermann C., Neumaier A., Sam D. (eds.) Global Optimization and Constraint
Satisfaction. Lecture Notes in Computer Science, No. 3478, pp. 71–85. Springer-Verlag, Berlin (2005)

9. Garloff, J., Jansson, C., Smith, A.P.: Lower bound functions for polynomials. J. Computat. Appl.
Math. 157, 207–225 (2003)

10. Garloff, J., Jansson, C., Smith, A.P.: Inclusion isotonicity of convex-concave extensions for polynomials
based on Bernstein expansion. Computing 70, 111–119 (2003)

11. GLOBAL Library, available under http://www.gamsworld.org/global/globallib.htm
12. Hansen, E.R.: Global Optimization using Interval Analysis, 2nd edn. Marcel Dekker, Inc., New York

(2003)
13. Hongthong, S., Kearfott, R.B.: Rigorous linear overestimators and underestimators. Tech. rep., Uni-

versity of Louisiana at Lafayette (2004)
14. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Series Nonconvex Optimization and

its Applications. Vol. 13, Kluwer Acad. Publ., Dordrecht (1996)
15. Lerch, M., Tischler, G., Wolff von Gudenberg J.: filib++ - Interval library specification and reference

manual. Technical Report 279, University of Wuerzburg (2001)
16. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer programming. Math. Program.

A 99, 283–296 (2004)
17. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-Spline Techniques. Springer, Berlin (2002)
18. Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Ellis Horwood Ltd., Chich-

ester (1988)
19. Schichl, H.: Mathematical Modeling and Global Optimization. Habilitation Thesis, University of

Vienna, (2003)
20. Smith, A.P.: BeBP: a software package for the rigorous computation of affine bound functions for

polynomials. ACM Trans. Math. Software (2007) (submitted)
21. Stahl V.: Interval methods for bounding the range of polynomials and solving systems of nonlinear

equations. Ph.D. thesis, University of Linz (2005)
22. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-

Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications.Series Nonconvex
Optimization and its Applications. Vol. 65, Kluwer Acad. bl., Dordrecht (2002)

23. Trump, W., Prautzsch, H.: Arbitrarily high degree elevation of Bézier representations. Computer Aided
Geometric Design 13(5), 387–398 (1996)

24. Zettler, M., Garloff, J.: Robustness analysis of polynomials with polynomial parameter dependency
using Bernstein expansion. IEEE Trans. Automat. Contr. 43, 425–431 (1998)

123

	Fast construction of constant bound functions for sparse polynomials
	Abstract
	1 Introduction
	1.1 Notation

	2 Bernstein expansion
	2.1 Generalised Bernstein coefficients
	2.2 Properties
	2.3 Complexity

	3 Bernstein coefficients of monomials
	3.1 Bernstein coefficients of univariate monomials
	3.2 Monotonicity of the Bernstein coefficients of monomials

	4 The implicit Bernstein form
	4.1 Determination of the Bernstein enclosure for polynomials
	4.2 Example
	4.3 Algorithm for the efficient calculation of the Bernstein enclosure of polynomials

	5 Numerical results
	6 Future work
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

